The UPC2 promoter in Candida albicans contains two cis-acting elements that bind directly to Upc2p, resulting in transcriptional autoregulation.
نویسندگان
چکیده
In Candida albicans, ergosterol biosynthetic genes, including ERG11, which encodes the target of azole antifungal drugs, are regulated by the transcriptional regulator Upc2p. To initially characterize the promoter of the UPC2 gene, 5' rapid amplification of cDNA ends was used to identify two transcriptional initiation sites upstream of the ATG codon. The regions within the UPC2 promoter required for azole regulation of the UPC2 promoter were then identified using nested deletions fused to a luciferase reporter which were tested for azole inducibility in wild-type (WT) and upc2Delta/upc2Delta strains. Two distinct regions important for azole induction were identified: a Upc2p-dependent region (UDR) between bp -450 and -350 upstream of the ATG codon and a Upc2p-independent region (UIR) between bp -350 and -250 upstream of the ATG codon. Within the UDR, loss or mutation of the sterol response element (SRE), so named because of homology to the Saccharomyces cerevisiae Upc2p binding site, resulted in a decrease in both basal and induced expression in the WT strain but did not affect azole inducibility in the upc2Delta/upc2Delta deletion strain. Gel shift analyses using the DNA binding domain of Upc2p confirmed binding of the protein to two SRE-related sequences within the UPC2 promoter, with strongest binding to the UDR SRE. Detailed gel shift analyses of the UDR SRE shows that Upc2p binds to a bipartite element within the UPC2 promoter, including the previously identified SRE and a new, adjacent element, the short direct repeat (SDR), with partial homology to the SRE.
منابع مشابه
Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance.
Upc2p, a transcription factor of the zinc cluster family, is an important regulator of sterol biosynthesis and azole drug resistance in Candida albicans. To better understand Upc2p function in C. albicans, we used genomewide location profiling to identify the transcriptional targets of Upc2p in vivo. A triple hemagglutinin epitope, introduced at the C terminus of Upc2p, conferred a gain-of-func...
متن کاملIdentification of promoter elements responsible for the regulation of MDR1 from Candida albicans, a major facilitator transporter involved in azole resistance.
Upregulation of the MDR1 (multidrug resistance 1) gene is involved in the development of resistance to antifungal agents in clinical isolates of the pathogen Candida albicans. To better understand the molecular mechanisms underlying the phenomenon, the cis-acting regulatory elements present in the MDR1 promoter were characterized using a beta-galactosidase reporter system. In an azole-susceptib...
متن کاملA gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate.
In the pathogenic yeast Candida albicans, the zinc cluster transcription factor Upc2p has been shown to regulate the expression of ERG11 and other genes involved in ergosterol biosynthesis upon exposure to azole antifungals. ERG11 encodes lanosterol demethylase, the target enzyme of this antifungal class. Overexpression of UPC2 reduces azole susceptibility, whereas its disruption results in hyp...
متن کاملThe yeast anaerobic response element AR1b regulates aerobic antifungal drug-dependent sterol gene expression.
Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp c...
متن کاملRegulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans.
Constitutive overexpression of the Mdr1 efflux pump is an important mechanism of acquired drug resistance in the yeast Candida albicans. The zinc cluster transcription factor Mrr1 is a central regulator of MDR1 expression, but other transcription factors have also been implicated in MDR1 regulation. To better understand how MDR1-mediated drug resistance is achieved in this fungal pathogen, we s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 9 9 شماره
صفحات -
تاریخ انتشار 2010